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The maximum likelihood method is a basic statistical technique for estimating parameters and variables, and
is the starting point for many more sophisticated methods, like Bayesian methods. This paper shows that
maximum likelihood fails to identify the true trajectory of a chaotic dynamical system, because there are
trajectories that appear to be far more �infinitely more� likely than truth. This failure occurs for unbounded
noise and for bounded noise when it is sufficiently large and will almost certainly have consequences for
parameter estimation in such systems. The reason for the failure is rather simple; in chaotic dynamical systems
there can be trajectories that are consistently closer to the observations than the true trajectory being observed,
and hence their likelihood dominates truth. The residuals of these truth-dominating trajectories are not consis-
tent with the noise distribution; they would typically have too small standard deviation and many outliers, and
hence the situation may be remedied by using methods that examine the distribution of residuals and are not
entirely maximum likelihood based.
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I. INTRODUCTION

A good deal of science involves solving an inverse prob-
lem to decide what are the most likely values of variables
and parameters of a model, given observations of a system.
One of the most powerful, and frequently applied, techniques
for this purpose is maximum likelihood. If M��� is a model
of a system where � is the variables and parameters to be
determined, � is the observations, and Pr�� ��� is the prob-
ability of making the observations � given �, then maximum
likelihood solves the inverse problem by finding the � that
maximizes Pr�� ���. This � is the most likely under the as-
sumption that the model and distribution Pr�� ��� are a per-
fect representation of the system and the errors of the obser-
vations.

Here we consider what happens when maximum likeli-
hood is used to determine trajectories of chaotic dynamical
systems. This is of interest in forecasting and parameter es-
timation of nonlinear systems �1–5�, and although we will
not explicitly discuss these goals, it should be obvious why
our results are relevant. Put bluntly, we find that maximum
likelihood cannot determine the true trajectory even when
using a perfect model and unlimited data, because there exist
trajectories whose likelihood dominates that of the true tra-
jectory in the sense that these trajectories appear to be, in the
limit, infinitely more likely than the true trajectory. This im-
plies that for inverse problems involving nonlinear dynami-
cal systems, maximum likelihood may not be reliable and
may need to be supplemented or replaced by more sophisti-
cated techniques—for example, by considering the distribu-
tion of residual errors.

The problem of determining trajectories of dynamical sys-
tems predates the maximum likelihood principle. The origin
of the maximum likelihood principle is found in the work of
Laplace, Legendre, Gauss, and others �6�, in the guise of the
least-squares method applied to the determination of astro-
nomical orbits of two bodies.

There is a growing need to identify the trajectories of
chaotic dynamical systems—for example, in weather and cli-
mate forecasting �7�, in tracking tumbling ballistic missiles
�8�, and other applications.

Various algorithms have been proposed to identify trajec-
tories of chaotic systems. Of course, there is the original least
squares method and more recent developments in variational
assimilation �9�, which are only successful for short lengths
of chaotic trajectories. For longer trajectories, gradient de-
scent methods �10–18� have been successful. These do not
necessarily attempt to find a maximum likelihood trajectory,
only a shadowing trajectory, although they can be modified
to do so �17�. Only recently has there been any proof that
such methods actually converge to the true trajectory in the
perfect model scenario, and then only for hyperbolic systems
with small, bounded, additive observational noise �19�. This
paper in part reveals why the small and bounded restriction
is needed and what goes wrong if it is removed.

There are many filtering techniques for the estimation of
the state of stochastic systems, and these have been applied
to chaotic dynamical systems. These include Kalman filters,
the more general Bayesian filters, various Monte Carlo simu-
lations of Langevin equations, and so on. None of these
strictly apply to deterministic chaotic systems. Furthermore,
gradient descent methods appear to be more accurate than
Kalman filters �20� and certainly more efficient than the
Monte Carlo approaches. In any case, the problem we de-
scribe here will equally apply to these approaches if they
attempt to find maximum likelihood trajectories, the problem
being with the maximum likelihood principle when applied
to chaotic systems, not the specific means of implementing
it.

Several recent papers �cited in the second paragraph� have
considered the problem of estimation of parameters of deter-
ministic dynamical systems. This problem implicitly in-
cludes a trajectory estimation, because conceptually one can
decompose the maximum likelihood principle into the like-
lihood of a trajectory for fixed parameter values, and maxi-
mization of this likelihood by varying the parameters.
Pisarenko and Sornette �3� provide an excellent review of the
maximum likelihood principle in this context, giving a clear
and careful account of how various proposed methods relate
to established statistical theory.
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This paper has a very specific goal: to demonstrate that
maximum likelihood is flawed when applied to chaotic dy-
namical systems under certain circumstances. In statistical
terminology we show that maximum likelihood does not pro-
vide a consistent estimator of the true trajectory. We do not
attempt to fully explore the consequences of this flaw, al-
though there is a brief discussion at the end of the paper.

II. LIKELIHOOD

Assume we have a perfect model f of a discrete time
deterministic dynamical system, where f is defined as a map
on a bounded state space S�Rd. �For an obscure technical
reason we will assume that there exists a Borel measure � on
S with ��S�=1.� Let xt denote the state of the model at time
t; then, a trajectory of the model is a sequence of states xt
with xt+1= f�xt�. Let T denote the set of all trajectories. As-
sume that every observation �t�Rk is a random variable
with a fixed known probability density ���t �xt� and that ev-
ery observation is independent of all other observations. �We
could employ weaker assumptions.� Write � to denote the
time series of observations of a true trajectory x��T.

Given observations � of x�, define

p�x��,T� = �
−T�t�0

���t�xt� , �1�

which is the likelihood of a trajectory x given the observa-
tions � in the time window −T� t�0.

The question asked here is: what typically happens to
p�x �� ,T� for large T? Does p�x �� ,T� concentrate on x�?
To address this there is advantage in dealing with likelihood
ratios. Suppose we know for some trajectory x that
p�x �� ,T��0 for all T. Given this reference trajectory x, then
for any other test trajectory y define

R��y,x� = lim
T→	

p�y��,T�
p�x��,T�

= lim
T→	

�
−T�t�0

���t�yt�
���t�xt�

, �2�

assuming the limit exists, otherwise R��y ,x� is undefined.

III. DOMINATING TRUTH

Let F��x��T be the set of trajectories y for which
R��y ,x� is defined. We say that the likelihood of x dominates
the likelihood of y if y�F��x� and R��y ,x�=0. In other
words, dominance means that as the time window of obser-
vation is extended, x appears to be far more �infinitely more�
likely than y.

In this section we will show that there can exist trajecto-
ries that dominate x�—that is, appear to be far more likely
than the true trajectory. We will show this using three in-
creasingly more specific examples of one-dimensional maps,
but it should be clear that the results generalize. Sections
III A and III B establish the motivation and plausibility of
dominance. Section III C provides a rigorous demonstration
of the existence of truth-dominating trajectories in a specific
class of one-dimensional maps. Sections III E and III F show
numerical identifications of truth-dominating trajectories in
the Henon map and their properties. Section III D is an aside

on maximum likelihood trajectories and their connection
with indistinguishable states �17�.

It will be useful in the following to partition F��x� into
two disjoint subsets F�

0�x�, where R��y ,x�=0, and F�
+�x�,

where R��y ,x��0. Note F�
0�x� is the trajectories dominated

by x.

A. Log-likelihood limits

Suppose k=d=1 with additive Gaussian noise with mean
zero and standard deviation 
. Take x� as the reference tra-
jectory, let �t=xt

�+�t, and consider a test trajectory y and
define wt=yt−xt

�. The �t represent additive observational
noise and are independent of xt

� and each other. The wt rep-
resent the deviation of yt from xt

�. Then

���t�yt�
���t�xt

��
=

exp�− ��t − yt�2/2
2�
exp�− ��t − xt

��2/2
2�
�3�

=
exp�− ��t − wt�2/2
2�

exp�− �t
2/2
2�

�4�

=exp�− �wt
2 − 2�twt�/2
2� . �5�

Consequently, using Eq. �5�, we have that

loge R��y,x�� =
1

2
2 �
t�0

�2�twt − wt
2� , �6�

provided ��� �xt
���0 for all t and the various limits and sums

exist. In Eq. �6� there are four cases possible.
�i� The sum diverges to −	, implying y�F�

0�x��; that is,
x� dominates y.

�ii� The sum converges to a finite value, which implies
that y�F�

+�x��. In this case neither of x� and y are dominant.
Note that if the sum is positive, then for T sufficiently large
p�y �� ,T�� p�x� �� ,T�, and if the sum is negative, then
p�y �� ,T�� p�x� �� ,T�.

�iii� The sum diverges to +	, which implies that x� cannot
be used as a reference trajectory. In this case x��F�

0�y�; that
is, y dominates x�. �This can be seen by exchanging the roles
of x� and y in the above, which leads to case �i�.�

�iv� The sum does not otherwise converge. �For example,
the partial sums oscillate between two finite values.�

When and why case �iii� occurs is of most interest to us.
When case �iii� holds there may be other trajectories that
dominate y. Observe that the relation 2�twt−wt

2�0 can be
interpreted geometrically as saying yt is closer to �t than xt

�

is. See Fig. 1, which is drawn in two dimensions, even
though we only discuss one-dimensional maps. Note that yt
is inside the sphere centred on �t with xt

� at its surface. The
sum �6� diverges to +	 when terms corresponding to being
inside these spheres outweigh the terms corresponding to
being outside these spheres.

At first sight it may seem implausible that a trajectory yt
can achieve the necessary correlation with random observa-
tion variables �t, but we will see for chaotic dynamical sys-
tems �with generating partitions� that such correlation is eas-
ily achieved.
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B. Plausible symbolic dynamics

On �0,1�, for 0���1/2, define a map

f�z� = �z/� , 0 � z � � ,

�z − 1 + ��/� , 1 − � � z � 1.
	 �7�

A middle-�1−2�� Cantor set is invariant under this map
�21,22�. Let S be this invariant set, and consider f and S to
define a dynamical system. Partition S into two components
S0= 
z�S :z�1/2� and S1=S \S0. Let st� 
0,1� record the
sequence of visitations to S0 and S1 of a trajectory x. The sets
S0 and S1 are a generating partition �23,24�, and so the point
x0�S is �almost surely� uniquely defined by the infinite bi-
nary sequence �sn�n=0

	 and it can be easily shown that

xt = �
n=0

	

�n�1 − ��sn+t. �8�

Let st
� be the symbol of xt

� and define

st = �1, xt
� � � and �t � �1 + ��/2,

0, xt
� � 1 − � and �t � �1 − ��/2,

st
�, otherwise.


 �9�

This symbol sequence defines a trajectory yt such that if st
and st

� differ, then yt is surely closer to �t than xt
�. It is

plausible that this y will dominate x�; however, we need to
show that the likelihood gains to y by switching partitions
outweighs any other variation in the likelihood it causes.

C. Likelihood growth rate with window size

To show that truth-dominating trajectories exist we dem-
onstrate their construction for the maps �7� by making sym-
bol changes like �9�. For �7� consider the situation that leads
to the key equation �6�. Suppose a test trajectory y has a
symbol sequence that differs from that of x� by just one
symbol at time t=0. It follows from Eq. �8� that

�wt� = �yt − xt
�� = ��−t�1 − �� , t � 0,

0, t � 0.
	 �10�

Using Eq. �10� in Eq. �6� gives

2
2 loge R��y,x�� = 2�1 − ����
t�0

�−t�t sgn�wt�� − �21 − �

1 + �
.

�11�

We want to investigate what typically happens in a situation
where the symbol change puts y0 closer to �0 than x0

�, but we
must take into account that the symbol change may increase
the distance of yt from �t for t�0. Under the assumption that
y0 is closer to �0 than x0

�, then

��
t�0

�−t�t sgn�wt�� � ��0� − �
t�0

�−t��t� . �12�

The �t are random variables, so consider the expected value
of this expression over noise realizations as follows. The
expected value of the �t depends on the conditions under
which we choose to change the symbol. Suppose we set a
threshold 
�0, so if ��0� exceeds 
 with the appropriate sign,
as in �9�, then the symbol change is made. For a lower bound
estimate �12� we can assume �without loss of generality� that
�0�
, but �t�
, for t�0. Given the symbol change thresh-
old 
, we have

E��0��0 � 
� =

e−
2/2
2

�2��1 − p�
�13�

and

E��t��t � 
� =
− 
e−
2/2
2

�2�p
, �14�

where p=��
 /
� and � is the cumulative probability func-
tion of the standard normal density. Combining these two
expectations �12� and �11� gives

E�2
2 loge R��y,x���

� K�
,
,�� =� 2

�
�1 − �

1 − p
−

�

p
�
e−
2/2
2

− �21 − �

1 + �
.

�15�

If K�0, then the likelihood of y exceeds that of x�. This can
be ensured by making 
 sufficiently large, as is now shown.
Since p=��
 /
�, then for large 
, p tends to 1, and from
asymptotic properties of the complementary error function,
1− p varies like �1/
�e−
2

. Consequently, for large 
, K varies
proportional to 
 with a positive constant. Hence, for suffi-
ciently large 
, K�0, and the likelihood of y exceeds that of
x�. In fact 
 does not need to be particularly large. Using the
above asymptotic approximation, for 
�0 we have 1− p
��2/��
 /
�e−
2/2
2

, also p�1/2 and e−
2/2
2
�1, so K�0

when


 �
�2

1 + �
+

2�2�


���1 − ��
. �16�

Since ��1/2, then 
�2�
+1/12 is sufficient.
Now consider making multiple symbol changes by wait-

ing at least m steps before taking advantage of another sym-
bol change. Each additional symbol change increases the
likelihood of the new trajectory y. The log-likelihood will

FIG. 1. �Color online� The geometrical relationship of truth xt
�,

an observation �t, a test trajectory state yt, and the vectors �t and wt.
When yt is inside the circle, then the test trajectory state is more
probable, given �t, than truth at this time t, or �2�t−wt�wt�0.
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grow linearly with window size by a rate of at least

K�
,
,�� � � 1 − p

1 + m�1 − p�� + O��m� , �17�

because on average, we wait m+1/ �1− p� steps before mak-
ing a symbol change, which when made increases the likeli-
hood by at least the amount for the one symbol change K,
defined in Eq. �15�, up to terms of order �m. The linear
growth rate implies the likelihood of y will dominate x�.

Hence, we have proven that for the shift maps with
Gaussian observational noise there exist, for typical observa-
tions, trajectories that dominate truth. It should be fairly clear
from following the above methodology that truth-dominating
trajectories also exist for bounded noise provided the noise is
sufficiently large to bridge the gap between S0 and S1 with
sufficient frequency. In general the larger the noise, the more
often one obtains advantageous symbol changes, hence the
stronger the growth of the likelihood of dominating trajecto-
ries, and hence the more obvious dominating trajectories be-
come.

The requirement that a system have a generating partition
is not essential for proving the existence of truth-dominating
trajectories. First note that in systems that do have generating
partitions, an arbitrary partition typically provides symbol
sequences that are a subshift; that is, certain symbol se-
quences are disallowed. Then, in the above argument, we
cannot necessarily make an advantageous symbol change
whenever we want. This means that we may have to search
longer until we obtain an advantageous symbol change,
which implies that the estimated rate of growth of the log-
likelihood with window size is slower, but still linear. In
practice it has been observed that many systems, with suit-
able partitions, have symbol sequences that are well approxi-
mated by subshifts �24–26�, which suggests the above argu-
ment applies to them too. It should also be clear that the
above methodology can be applied to systems with d�1.

D. Maximum likelihood trajectories

The previous subsection shows that truth-dominating tra-
jectories exist. It may be asked, does there exist a maximum
likelihood trajectory x̂? Such a trajectory should have
F��x̂�=S and R��y , x̂��0 for all y�F��x̂�; that is, x̂ either
dominates other trajectories or has the largest likelihood ratio
when it does not dominate. It is not clear that such a x̂ need
exist, but there is reason to suspect they do for dynamical
systems with generating partitions.

When there is a generating partition one might guess that
the trajectory that has the same symbol sequence as �t is a
candidate for x̂. This is not necessarily the case. In principle,
if a x̂ exists, it could be found by a combinatorial optimiza-
tion over symbol sequences, which would be a hard problem
to solve. In the case of shift maps �7�, however, this problem
should be solvable for � small as follows. Consider the sym-
bol sequences satisfying

st = �1, �t � �1 + ��/2,

0, �t � �1 − ��/2,

unspecified otherwise.

 �18�

A trajectory with such a symbol sequence is close to �t when
a symbol is specified. Furthermore, by methods similar to the
previous section, it can be shown that when � is small,
changing a symbol from the value specified above will de-
crease the likelihood. Consequently, the problem of finding
x̂ is reduced to determining the unspecified symbols for
�1+�� /2��t� �1−�� /2. When � is small there is a low
probability of unspecified symbols, so they are widely sepa-
rated, and specifying these symbols tends not to effect the
specification of the others. Hence, the problem should be
solvable sequentially. This general argument should general-
ize when a generating partition is available, possibly employ-
ing partition refinements and symbolic shadowing �24�.

There are some properties of dominance and maximum
likelihood trajectories that may be of peripheral interest.
�The technical details are omitted here, but may appear
somewhere more appropriate.� There is a connection be-
tween the indistinguishable states H�x� of a trajectory x and
dominance of this trajectory. �For additive Gaussian observa-
tional errors two trajectories x and y are indistinguishable if
�t�0�yt−xt�2�	 �17�.� For mixing systems, or perhaps just
systems with a positive Lyapunov exponent, and Gaussian
observational errors, if y�F�

+�x�, then �-almost surely
H�y��F�

+�x�, and similarly for F�
0�x�. So indistinguishable

states are equivalent in terms of dominance. Furthermore, if
an invariant set S of a system has a generating partition and
there exists a maximum likelihood trajectory with x̂0�S,
then for any trajectory y on S there exist trajectories ŷ
�H�y� such that ŷ0 is arbitrarily close to x̂0. In particular,
this holds for the true trajectory x�. These trajectories that
pass close to x̂0 may have small Q probability �17�; that is,
they are not close to x�. The calculations of the next section
illustrate this.

E. Logistic map

The construction of Sec. III C only proves the existence
of truth-dominating trajectories in a class of one-dimensional
shift maps. In this section we describe a suboptimal method
for finding �potentially� truth-dominating trajectories by lo-
cally optimal selection of pre-images of the one-dimensional
logistic map

f�z� = 4z�1 − z�, z � �0,1� . �19�

This map has a generating partition; it is �essentially� topo-
logically conjugate to Eq. �7� with �=1/2.

The logistic map is two to one for every state, except x
=1/2, so given any yt�1/2 there are two choices of yt−1.
Given observations � of a true trajectory x�, one can work
backward sequentially selecting pre-images to maximize
���t−1 �yt−1�. This is suboptimal because it ignores the possi-
bility that a pre-image selection that increases the likelihood
at some t may result in later cumulative decreases that out-
weigh the advantage at t or preclude more advantageous
changes further on. The procedure can be initialized with an

KEVIN JUDD PHYSICAL REVIEW E 75, 036210 �2007�

036210-4



arbitrary y0; we used y0=�0 in the plots, but essentially iden-
tical results were obtained for y0=x0

� or arbitrary y0.
Figure 2 shows the growth rate of logeR��y ,x�� computed

for Gaussian noise N�0,
2�. From the graphs it is seen that
variation of the growth rate for different observation se-
quences is sufficiently small given this long sample �i.e., for

�0.1 the mean graph is more than two standard deviations
above zero� to imply that truth-dominating trajectories are
definitely being identified for all but the smallest noise lev-
els.

The construction used here could be used to find truth-
dominating trajectories in other noninvertible maps. Invert-
ible maps would require some other kind of search. For ex-
ample, symbolic shadowing �24� might be adapted for this
purpose. In general, in invertible maps, truth-dominating tra-
jectories will be a species of homoclinic trajectory—that is,
trajectories that repeatedly diverge from, then later return to,
a neighborhood of the true trajectory’s state. Consequently,
one should expect to find truth-dominating trajectories near
intersections of the local stable and unstable manifolds of the
true trajectory �19�. Other methods of finding truth-
dominating trajectories could be patching together of peri-
odic orbits or the use of gradient descent algorithms. What-
ever, the author expects that truth-dominating trajectories
exist in typical chaotic systems when the observational noise
is sufficiently large.

F. Residuals

Figure 3 shows the standard deviation of the residuals
�difference between observations and trajectory� for both the
true trajectories and the computed truth-dominating trajecto-
ries and the root-mean-square deviation of the truth-
dominating trajectory from the true trajectory.

First note that the residuals of the truth-dominating are
smaller than those of the true trajectory �i.e., the actual
noise�, and more so for larger noise levels. This is as ex-
pected because the truth-dominating trajectories will tend to
be closer to the observations on average. Figure 4 shows that
the residuals for the truth-dominating trajectories are not

Gaussian; they are leptokurtic—that is, peaked around zero,
with fatter tails than a Gaussian. This is an important obser-
vation, because it suggests that methods other than maximum
likelihood that take into account the distribution of residuals
may provide better methods for identifying the true trajec-
tory.

Another interesting aspect of Fig. 3 is the root-mean-
square deviation of the truth-dominating trajectory from the
true trajectory. This deviation is a substantial fraction of the
noise level for noise levels greater than 0.1. This implies that
these truth-dominating trajectories do not look like the true
trajectory a substantial fraction of the time. �They are not
closely shadowing the true trajectory.� This also implies that

FIG. 2. �Color online� Growth rate of
loge R��y ,x��, for different Gaussian noise
N�0,
2�, for sequentially constructed trajectory
using 3000 observations. Ten noise realizations at
each level with the solid line at the mean of the
realizations. True trajectory had x0

�=1/�17.

FIG. 3. �Color online� The standard deviation of the residuals of
the true trajectories ��, mean as solid line, red in color, essentially
the upper line of data� and the computed truth-dominating trajecto-
ries ��, mean as dashed line, blue in color, essentially the middle
line of data� and the root-mean-square deviation of the truth-
dominating trajectory from the true trajectory ��, green in color,
essentially the lower line of data�. Same data as used in Fig. 2.
Values for ten realizations at each noise level with solid line indi-
cating the mean of realizations.
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if there is a maximum likelihood trajectory x̂, it also differs
from the true trajectory a substantial fraction of the time.

IV. CONCLUSIONS

We have defined the concept of a truth-dominating trajec-
tory, proven that they exist in one-dimensional shift maps,
given numerical evidence of them in the logistic map, and
argued that they will be found in typical chaotic dynamical
systems. The numerically calculated truth-dominating trajec-
tories were significantly different from true trajectories, with
deviations a substantial fraction of the noise level, and these
features should be expected in general. Hence we conclude
that maximum likelihood is not a consistent estimator of tra-
jectories of chaotic dynamical systems, because it does not
reliably identify the true trajectory given any amount of ob-
servations, if the noise level is sufficiently large. Dominance
defeats Bayesian methods too. A sensible posterior will em-
ploy a product of p�y �� ,T� and some prior, but as T becomes
large, the prior should be irrelevant.

The failure of maximum likelihood and Bayesian methods
in this situation does not mean all is lost, because the fault
lies with the methods and their assumptions, not statistics in
general. The difficulties that arise are akin to overfitting data,
where truth-dominating trajectories overfit the dynamics. In
Sec. III F this fact was seen to be revealed by examining the
residuals of the fitted trajectories. A true trajectory will have
residuals consistent with the known observational noise dis-
tribution with probability one. Figure 4 showed that the re-
siduals for the truth-dominating trajectories clearly are not
Gaussian. This suggests a method that minimizes both the
variance and kutosis of residuals might perform better at
identifying the true trajectory when the observational noise is
Gaussian. In general, given a model for the observational
error distribution, one needs to ensure that the residuals are
consistent with the noise model and, if possible, develop

algorithms that use this as the criterion for finding the true
trajectory, rather than simply maximizing the likelihood.

Finally, consider the question of what effect dominance
might have on parameter estimation. At this stage it is an
open question that needs investigation. An immediate guess
might be that dominance has little effect because there are
several examples in the literature of successful application of
maximum likelihood techniques to parameter estimation of
chaotic dynamical systems. It should be noted, however, that
these consider relatively simple, lower-dimensional systems.
�The author is interested in the situation for high-dimen-
sional systems—for example, in weather and climate mod-
els.� In low-dimensional systems like the logistic map, the
attractor is well sampled and has many well-defined features
that are densely sampled. For example, the edges of the at-
tractor are images of the critical point of the map. Conse-
quently, the size of the attractor is a good indicator of the
parameter value. In high-dimensional systems, the attractor
is poorly sampled and not easily delineated; all points being
more or less equidistant from each other. The author believes
that dominance plays a more significant role in high-
dimensional systems. It remains to be seen whether this is
true. What effect dominance might have is currently un-
known. One possible effect occurs when a parameter makes
a model become more chaotic—that is, larger Lyapunov ex-
ponent or closer to being conjugate to a full shift. When
estimating the parameters of this system, models with incor-
rect parameter values can have trajectories that match the
noise better, according to maximum likelihood, than trajec-
tories of the model with the true parameter value, which is
less chaotic. Hence, maximum likelihood would give biased
parameter estimates.

ACKNOWLEDGMENT

This research was supported by Australian Research
Council Grant No. DP0662841.

FIG. 4. �Color online� The kurtosis of the re-
siduals of the true trajectory ��, mean as solid
line, red in color, essentially lower line of data�
and computed truth-dominating trajectories ��,
mean as dashed line, blue in color, essentially
upper line of data�. Same data as used in Fig. 2.
Values for ten realizations at each noise level
with solid line indicating the mean of reali-
zations.
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